Fascination of Laser in Munich

25th INTERNATIONAL CONGRESS OF THE DGL
LASER START UP 2016

30 September — 1 October 2016
Munich | The Westin Grand Munich

Fax Reply +49 341 48474-290

I would like to receive further information on the:

☐ 25th International Congress of the DGL
☐ LASER START UP 2016
New treatment protocol for periodontal pocket treatment

Combination of Er:YAG and Nd:YAG lasers

Author: Kinga Grzech-Lesniak, Poland

Periodontitis is the most common chronic inflammatory disease in adults of European populations. Eight out of ten over 35-year-olds suffer from some kind of gum complaint. It is associated with systemic diseases including type 2 diabetes, cardiovascular disease and stroke. Although they are so common, periodontal diseases are not very well acknowledged.¹,²

To date, mechanical therapy has been the general treatment for plaque-induced periodontal disease. A lot of studies have shown that mechanical treatment itself does not lead to a complete healing because it does not eliminate the periopathogenes.³

Laser therapy may constitute an efficient alternative to surgical treatment. Based on research, data and experience of many practitioners, we can enumerate potential advantages of laser therapy, such as bactericidal, detoxification and homeostatic effects and biostimulation. It is also easy to use, provides good access to anatomically difficult areas and makes a comfortable treatment for patients. Laser treatment provides for eradication of bacteria and better wound healing.⁴,⁵

High-energy lasers are applied in periodontal procedures as adjunctive therapy or alternative conventional procedures have become standard treatment.
of periodontal pockets. Their effectiveness in elimi-
inating periodontal pathogens and decreasing pocket
depth is widely documented. Neodymium: Yttrium–
Aluminum: Garnet (Nd:YAG) laser with a wavelength
of 1,064 nm can decontaminate periodontal pocket
without causing necrosing or carbonization of the
underlaying connective tissue. Periodontopatho-
gens can persist within cells outside the pocket epi-
thelium after mechanical conventional mechanical
periodontal debridement, and Gianelli et al. reported
that the Nd:YAG is capable of eradicating periodonto-
pathogenic bacteria trapped within gingival epithelial
cells. Erbium:YAG (Er:YAG) with a wavelength of 2,940 nm
has been applied for effective elimination of granula-
tion tissue, gingival melanin pigmentation and gingi-
val discoloration. This laser is also used for contouring
and cutting of bone with minimal damage and en-
hances healing. In addition, irradiation with the
Er:YAG laser has a bactericidal effect with reduction
of lipopolysaccharide, is efficient in calculus removal,
with the effect limited to a very thin layer of the sur-
face and is effective for implant maintenance.

A case report

A 47-year-old female patient was diagnosed with
advanced generalised periodontal disease, numerous
missing teeth, lack of prosthetic supplements in
the posterior region, periapical lesions, and an in-
complete endodontic treatment. The patient required
a comprehensive dental treatment. To create a pre-
liminary treatment plan, it is necessary to implement
initial treatment (hygienisation) to check the pa-
tient’s motivation to continue the highly specialised
treatment and assess the prognosis of her teeth.

Detailed clinical examination should include,
among others, data on the periodontal pocket depth
(PD), bleeding on probing (BOP) and plaque index (PI).
In the case of a significantly severe disease, high tooth
mobility, numerous missing teeth, it is recommended
to carry out a molecular-biological test to assess
periopathogens quantitatively and qualitatively.

Before the treatment the patient underwent su-
pragingival hygienic procedures done with ultra-
Figs. 3–7: Sterilisation of the periodontal pockets and decontamination.
Figs. 8–12: Removal of subgingival stone.
Figs. 13 & 14: Bleeding stop.
sound scaler (EMS, Piezon). After hygienisation, the clinical condition of the patient improved. Additional examination was carried out to determine the stage of the periodontal disease. Then, an Nd:YAG laser was applied for periodontal pocket sterilisation and decontamination (Figs. 3–7) and Er:YAG laser to remove subgingival calculus (Figs. 8–12). For final decontamination and stabilization of the fibrin clot, the Nd:YAG laser was applied again (Figs. 13 & 14). Figure 15 shows the situation immediately after surgery by Er:YAG and decontamination of the periodontal pocket by Nd:YAG (LightWalker, Fotona).
Summary

Er:YAG and Nd:YAG lasers have become the tool of choice in the treatment of periodontal diseases. They effectively reduce bleeding (BOP) and pocket depth (PD) and are less time-consuming in comparison to conventional methods. Another advantage is the increased access of laser light to anatomically difficult areas compared to conventional hand tools, such as deep narrow pockets or furcations.

Lasers broaden the range of treatments offered in the dental office, increasing precision, enabling minimally-invasive treatments and better wound healing. The introduction of laser methods to the dental practice compels us to further learning, improving professional qualifications and specialisation in the field. This in turn extends the range of non-surgical treatments of periodontal diseases.

Editorial note: A list of references is available from the publisher

contact

Kinga Grzech-Lesniak DDS, PhD
Oral Surgery Department, Medical University of Wroclaw, Poland
Specialist Periodontist
President of the Polish Society of Laser Dentistry, PTSL
ptsl@laser.org.pl
kgl@periocare.pl